
Prediction of Fit Categories

Xuewen Yang
1,2
, Weiyu Hu

3
, and Steven Xie

3

1
Department of Mathematics, UC San Diego

2
Halicioglu Data Science Institute, UC San Diego

3
Department of Computer Science and Engineering, UC San Diego

November 30, 2022

1

1

1. Exploratory analysis
The dataset that we decided to use is the users’
measurements, clothing fits, reviews, etc. from
RentTheRunway. This dataset consists of 105508 users,
5850 items, 192544 number of transactions. Among
transactions, there are 192462 of the transactions such that
they have no null value. Under this circumstance, the
dataset is definitely large enough for us to perform
predictive analysis with methods from class or methods
that suit better for our task. The dataset contains the
following properties of a user and the user’s comments
with respect to a certain clothing item that they interacted
with:

Table 1.

Name Description

fit a clothing item’s fit for a user (small,
fit, large)

user_id unique identifier of a certain user

bust size measurement around the chest over
the fullest part of the breasts of a
user

item_id unique identifier of a certain item

weight weight of the user

rating user’s preference score on a
particular item

rented for reason the user rented the clothing

review_text an user’s comments about a certain
item

review_summ
ary

short summary of the comments
made by an user

category clothing type of an item

height height of the user

size size of the clothing item

age age of the user

review_date the date that the review is received

After looking through the structure of the dataset, we infer
that the dataset contains three important and crucial
features for doing a predictive task: weight, height, and
size. We normalize the weight, height, and size columns in
the dataset to gain more insights about the features.

Figure 1.

Figure 2.

Figure 3.

2

By plotting the above features, we observe some
interesting findings that we did not expect at the
beginning. For clothing items in the “large” class (i.e. the
size of an item is too large for the user), the distribution of
this “size” data is right-skewed. Users in this class tend to
buy clothing size that is smaller in general compared to the
other two classes (“small” and “fit”), as the other two
distributions show a less right-skewed and approximately
normal distribution. This is interesting as we initially
expect the size distribution in the “large” class to be
left-skewed because the items in this class would typically
have a larger size. In addition, the shape and spread of the
distributions of the “weight” and “height” feature data
looks fairly similar.

2. Predictive Task
As we dived deep into the dataset, we thought that the fit
categories would be interesting to perform a categorical
predicting task. We then checked through the entire dataset
and found that “fit” only has three categories: {small, fit,
large}. Intuitively, as fit must associate the clothing sizes
with the customers’ body measurements, we believed that
whether an clothing item fits a customer or not is greatly
determined by the three essential factors: the item’s size,
the customer’s weight, and the customer’s height. As a
result, we picked ‘weight’, ‘height’ and ‘size’ from each
user to form the feature matrix and feed it to our baseline
model. However, some data does not contain the properties
we need. We must perform modifications to our dataset
before using the dataset to generate features we need.

At first, we make a list of properties we need, and then we
iterate through the dataset to grab all the data that contains
all the properties in the list. For example, if the list
elements are [“weight”, “height”, “size”], then we only
take the data that does not have invalid entry values from
the query keys in the list above. We name this filtered
dataset new_dataset. During the process of dropping out
invalid data, we also noticed that the values of height,
weight and size are not integers yet. We have to do some
more data cleaning work on the new_dataset so that we
can generate our desired feature matrix. In the
new_dataset, we need to extract the integer values of the
weight of each data from the form of a string to an int. We
do so by removing the unit and using the integer
conversion function. Next, we convert the height of each
data from feet to inches. After that, we convert the size of
the clothing items from the form of string to int as well.
After all the data cleaning, we get a clean dataset with a
size of 153,441, which is still large enough to perform the
baseline prediction.

We will build our baseline predictor in the form:
𝑓(𝑤𝑒𝑖𝑔ℎ𝑡, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑠𝑖𝑧𝑒) → 𝑓𝑖𝑡𝑡𝑖𝑛𝑔
using baseline features [1, d['weight'], d['height'], d['size']]
from each data. Our predicted output given a single feature
will be a value within the set {“small”, “fit”, “large”} of
each data. Since there are three categories that the model
needs to predict, we need to perform multiclass
classification.

Before building our baseline model, we calculated the
percentage of each class of {small, fit, large} in the
new_dataset.

Table 2.

Class Proportion

small 0.134019

fit 0.736035

large 0.129946

Table 2 shows that class “fit” accounts for approximately
73.6% of the data, class “small” accounts for

3

approximately 13.4% of the data, and class “large”
accounts for approximately 13% of the data. The new
dataset is large and contains imbalanced data. We decided
to build two different models, one using an imbalanced
dataset and one using a modified dataset that is balanced
using some kinds of balancing methods. Given these two
kinds of dataset we are using, we decided to use two
different performance metrics to evaluate our models.

For the imbalance dataset, we are going to use the F1 score
metric to evaluate. The F1 score is the harmonic mean of
precision and recall, where a F1 score of 1 is the best and a
F1 score of 0 is the worst in our predictive model. We
choose the weighted average F1 score that is to take the
mean of each class’s F1 score with consideration of each
class’s support.

Let True Positive be TP. Let False Positive be FP. Let
True Negative be TN. Let False Negative be FN. Then, the
formula for calculating F1 score for one class is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

𝐹1 = 2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The formula for calculating weighted average F1 score for
n classes is:

𝐹1 = 1
𝑛

𝑖=1

𝑛

∑ (𝐹1
𝑖

* 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖)

To generate a balanced dataset, we will use the
undersampling technique to balance our dataset.
Undersampling is the process of balancing an unevenly
distributed dataset through keeping all of the data in the
minority class and setting a threshold to limit the size of
the majority class. We achieve this by taking the average
of the sizes of two minority classes, “small” and “large”,
which turns out to be 20251, and set this average value as
the new size for the “fit” class. We then generate a new
dataset that contains all the data in the “small” and “large”
classes and 20251 data of the “fit” class by randomly
sampling the original “fit” class. This new dataset is of size
60754. The proportion of each class in the modified
dataset is shown in Table 3.

Table 3.

Class Proportion

small 0.338480

fit 0.333328

large 0.328192

The dataset is now balanced, so we are going to use
accuracy for evaluation, which has the formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 +𝑇𝑁 +𝐹𝑃+𝐹𝑁

3. Model
A classification model is essential in our predictive task
compared to a regression model because classification
models work better on predicting classes, while regression
models commonly work for predicting numerical values.
Given that our predictions are different classes, we need to
choose a classifier. Most commonly used classifiers are
Logistic Regression, Decision Tree, Stochastic Gradient
Descent (SGD), LinearSVC for a large dataset. We are
going to fit the baseline features into each of the four
models to determine one model for our predictive task.

First, we use the train_test_split function from Sklearn
library to split the new_dataset into training, testing and
validation sets with a ratio of 0.7:0.15:0.15. As we
mentioned in the previous section, the baseline feature is
[1, d[‘weight’], d[‘height’], d[‘size’]] from each data.
Therefore, for our baseline model, we transformed all three
sub-datasets into baseline feature representations. Then,
we fitted all four classifiers with the training data using
default hyperparameters. Also, we calculated the
validation and testing weighted average F1 scores of all
four models. The data is shown in table 4.

Table 4.

classifier
Validation

weighted F1 score
Testing weighted F1

score

Logistic
Regression

0.621762 0.629634

4

Decision
Tree

0.627872 0.637713

SGD 0.621859 0.629015

LinearSVC 0.621158 0.628730

The result demonstrates that the DecisionTreeClassifier
has the highest weighted F1 score on both validation and
testing datasets. Thus, we will use DecisionTreeClassifier
as our classifier with consideration of different
hyperparameters in our predictive task. This default
decision tree classifier model gave us a weighted
validation F1 score of 0.627872 and a weighted testing F1
score of 0.637713.

We tried to test the model with different function
parameters of DecisionTreeClassifier to see if there is any
improvement on the weighted F1 score. The parameter we
are changing is “max_depth”, which specifies the
maximum depth of each tree. Since the default value for
“max_depth” is set to None, the decision tree will stop
splitting until all data points in a leaf come from the same
class for all leaves. This will memorize the noise of the
training data, causing over-fitting and failure to fit unseen
data. We are changing the maximum depth of the tree from
2 to 25 to find the model with the highest weighted F1
score as our baseline model. Every time we fit the model
with the training data using a different number of
“max_depth”, we also use the model to predict the
validation data and training data. At the same time, we
record the weighted F1 score of these predictions.
Validation weighted F1 score is shown in table 5.

Table 5.

max depth weighted F1 score

2 0.621185

3 0.621185

4 0.621185

5 0.621185

6 0.621180

7 0.621230

8 0.623594

9 0.622699

10 0.623586

11 0.624480

12 0.624822

13 0.625513

14 0.625434

15 0.626430

16 0.627312

17 0.627537

18 0.628268

19 0.627984

20 0.627728

21 0.627965

22 0.628039

23 0.627817

24 0.627709

This pipeline gave us 18 as the best value for “max_depth”
in this case. The associated weighted F1 score is 0.628268.
Using the fitted DecisionTreeClassifier model with 18 as
the “max_depth”, we predicted from the testing data and
calculated the weighted F1 score, which is 0.636956. This
is even less than the testing weighted F1 score given by the
default DecisionTreeClassifier model. We need to modify
the feature representations of data to improve the model.

In order to optimize the baseline model, we tried to add
more features. From all other properties, we think that
customers may give feedback on the fitting of the clothes

5

in “review_text” and “review_summary”. Thus, we use the
Bag of Words method to tokenize “review_text” and
“review_summary” of training data. Before transforming
the text into a vector, we remove all punctuation, convert
uppercase letters to lowercase, convert words to words
stem and remove all stop words for each text in
“review_text” and “review_summary”. After these
transformations, we count each word’s frequency and get
the most frequent 4000 words as our bag-of-words.

The new feature will be the baseline features appended
with the tokenized vector using bag-of-words. We will use
the same process as above to find the parameter that
produces the highest validation weighted F1 score. All the
validation weighted F1 scores are shown in table 6. From
the table, we can see the parameter that produces the
highest validation weighted F1 score is 13 with a weighted
F1 score of 0.766067. This improved model gave us a
testing weighted F1 score of 0.770700, which is higher
than what the baseline model produced. Thus, we think
this new feature representation can help us predict the
fitting of products.

Table 6.

max depth weighted F1 score

2 0.711064

3 0.730774

4 0.720891

5 0.738238

6 0.759126

7 0.758221

8 0.757526

9 0.757022

10 0.761161

11 0.763741

12 0.764466

13 0.766067

14 0.764611

15 0.763968

16 0.762468

17 0.762473

18 0.760951

19 0.759077

20 0.757908

21 0.756730

22 0.757447

23 0.756998

24 0.753500

Because of the imbalanced classes, we also decide to
obtain a balanced dataset from the dataset we evaluate with
F1 score, as mentioned in the end of section 2, Predictive
Task. Using the same train_test_split technique, we obtain
new training, testing and validation sets with a ratio of
0.7:0.15:0.15. Then, we use the same features and the
same classifier as the last task, the only difference is that
we use accuracy to evaluate this new model because the
dataset is now balanced. The accuracy for the new
validation set at each max tree depth is shown in the
following table:

Table 7.

max depth accuracy

2 0.508065

3 0.550532

4 0.594754

5 0.597717

6 0.627784

6

7 0.638648

8 0.652584

9 0.650499

10 0.654230

11 0.651706

12 0.650170

13 0.653023

14 0.651267

15 0.644793

16 0.643147

17 0.638318

18 0.640074

19 0.635356

20 0.631186

21 0.630088

22 0.622297

23 0.622517

24 0.615604

4. Literature
We first obtained our dataset from the list of datasets that
the Professor frequently uses. In the paper Decomposing fit
semantics for product size recommendation in metric
spaces, each transaction with fit feedback is embedded by
its related customer and clothing item, which constructs
the latent representations. To address the class imbalance
problem, metric learning with prototyping technique is
used to re-sample data from different classes to change the
data distribution.After that, they use LMNN to bring
transactions with the same fit feedback closer in the vector
space. This effectively improves the performance in the
final KNN classifier, which relies on the distance between

the predicted data point and the class that the data point is
most close to.

The second paper we looked into is A Deep Learning
System for Predicting Size and Fit in Fashion
E-Commerce, which also used the dataset
RentTheRunWay. Besides discussing the common issue -
imbalance class - in this dataset, this paper further reveals
the difficulties in predicting the fit feedback. In real
practice, the size of a clothing item can have a significant
effect on the fit feedback by the customer. However, sizes
of clothing items differ from regions to regions, brands to
brands, or even items to items from the same brand. There
is no agreement that can consistently regulate the sizes,
and therefore makes it even more difficult to predict the fit
feedback given a query. In this work, it uses a deep
learning based content-collaborative methodology for fir
prediction. Its method uses both the interaction data and
customer and article features, whereas, normally, the other
approaches only use customer and article features. The
neural network(SFNet) is inspired by the Siamese
Networks, the difference is that instead of having two
identical networks processing the inputs, the SFNet
processes customer latent embeddings in one neural
network and article latent embeddings in another neural
network “in parallel” and joins the outputs from the two
distinct networks with more non-linear layers to feed the
learned representations to the last softmax layer for the
final classification. Our conclusion is quite similar:
without prior knowledge about the fit category, we can
train a model with embedded features about a user, its
related review, and the customer-clothing item interaction
to predict whether a clothing item fits with a decent
performance.

5. Results and Conclusions
Using different feature representations from the original
imbalance dataset to fit our models, we generate two lists
of validation and training weighted F1 scores for each
model. The specific values are shown in table 5 and table
6. The plot for all weighted F1 scores of validation and
training data and the testing F1 score generated by the
“best model” is shown in figure 4 for baseline model and
figure 6 for improved model.

https://cseweb.ucsd.edu/~jmcauley/datasets.html

7

However, when we try to use a confusion matrix to
evaluate the performance of the baseline model using the
first strategy, the majority of the predictions are predicted
as “fit”. As seen in figure 5, “fit“ class is nearly perfect,
however, the model is extremely biased towards “fit” such
that 97% of the “large” class and “small” are predicted as
“fit”. The true positive labels are very poorly predicted for
these two classes. The low performance in dealing with
false positives and false negatives results in relatively low
F1 scores (Figure 4).

Figure 4.

Figure 5.

Same issue happened in the improved model (model 2) as
shown in figure 7. Adding the text features extracting from
the “review_text” and “review_summary” of each data to
the baseline feature did produce a higher weighted average
F1 score and more true positive labels compared to the
baseline model. We infer that the “review_text” and
“review_summary” data do have some importance in
predicting the fitting data. However, as we can see, there
are still 61% of the “large” class and 61% of the “small”
class being predicted as “fit”. This model 2 improved the
baseline model but still needs to be optimized further.

Figure 6.

Figure 7.

8

Figure 8 shows the accuracy score for training and
validation sets for model 3 when training with different
“max_depth”. The general testing accuracy score is
0.651195, which is somewhat lower than what we expect.
However, in figure 9, the majority of the “small” and
“large” class, 58% and 69%, respectively, are predicted
correctly in the corresponding class.

Figure 8.

Figure 9.

We tuned one hyper-parameter of our model: max_depth.
Intuitively, we expect the performance to be higher with
higher max depths because the model can handle more
complex “decisions”. This idea is correct until max depth

is over 10, the performance starts to decrease probably due
to overfitting (Figure 8).
With strategy 2, although the accuracy is not as high as
expected, we managed to improve the true positive
predictions. This is also a significant improvement if we
compare it to the previous models with imbalanced class,
we do not want the model to be biased that it can only
predict an input as “fit”, when the input should be in fact
“small” or “large”.

Reference
Decomposing fit semantics for product size
recommendation in metric spaces
Rishabh Misra, Mengting Wan, Julian McAuley
RecSys, 2018

A deep learning system for predicting size and fit in
fashion e-commerce
Abdul-Saboor Sheikh, Romain Guigourès, Evgenii
Koriagin, Yuen King Ho, Reza Shirvany, Roland Vollgraf,
and Urs Bergmann
RecSys, 2019

