
Prediction of Officer's Rank
Kancheng Yin, Xuewen(Daphne) Yang

Summary of Findings

Introduction
This dataset in this project contains filled civilian complaints against the New York City police officers. For
police officers, their ranking have effects on their authority and responsibility and implies the police culture
they usually engage during work. Hence, it is useful predict the ranking of a police officer as it may reflect
some about that officer.
We plan to predict, as of July 2020, the rank of an officer that got filed with a complaint. The relavent data
stored in the 'rank_now' column. Since there are several ranking and the ranking is a categorical
variable, we decided to use multiclass classification for our prediction.
We choose balanced accuracy for our metric. It's most important for our model to correctly predict the
ranking of an officer. False positives and false negatives does not have much of a concern for us.
Since we are planning to predict the officer's latest rank, we are going to only use data that can be
obtained during the time of the incident to form our features.

Baseline Model
We are using 2 categorical features ('mos_gender' and 'mos_ethnicity') for prediction:

Both features are encoded using OneHotEncoder
We chose DecisionTreeClassifier as our classifier

Our performance metric is around 0.13 for both the training and testing dataset.
This current model is not ideal since its performance metric is poor. However, it's performance between the
training and testing set is similar, meaning that the classifier did not overfit the data.

Final Model
We added 4 new features for prediction:

Categorical columns: 'complainant_gender' , 'complainant_ethnicity' , and
'rank_incident' .

We use FunctionTransformer to derive new features 'same_gender' and
'same_ethnicity' that show whether or not the police and the complainant have the same

gender or same ethnicity.
Then we one-hot encode these two new features and the 'rank_incident' feature.

Quantitative column: 'mos_age_incident' .
We use 'StandardScaler' to standardize the 'mos_age_incident' column.

We chose DecisionTreeClassifier as our classifier. By using GridSearchCV , the best
hyperparameters obtained are 'gini' and 14 for criterion and max_depth, respectively.
This model is still not a good fit since it has low balanced_accuracy_score . However, our model
improved from 0.13 to 0.34 on both the training and testing dataset, showing that the added features help
improve the model.

Fairness Analysis

Null Hypothesis: Our model is fair. Its balanced accuracy for female and male officers are
roughly the same, and any differences are due to random chance.
Alternative Hypothesis: Our model is unfair. Its balanced accuracy for male officers is higher
than its balanced accuracy for female officers.
Test Statistic: balanced_accuray_male - balanced_accuray_female

Since our p-value from our permutation test is smaller than 0.05, we reject the null hypothesis. It seems like the
difference we've observed is not due to random chance and our model maybe unfair performance between
male and female officers.

Code

In [1]:

In [2]:

Checking for missingness and data types in police_data

(33358, 27)

Out[2]:
unique_mos_id first_name last_name command_now shield_no complaint_id month_received year_receive

0 10004 Jonathan Ruiz 078 PCT 8409 42835 7 201

1 10007 John Sears 078 PCT 5952 24601 11 201

2 10007 John Sears 078 PCT 5952 24601 11 201

3 10007 John Sears 078 PCT 5952 26146 7 201

4 10009 Noemi Sierra 078 PCT 24058 40253 8 201

5 rows × 27 columns

Import packages needed for analysis
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
%config InlineBackend.figure_format = 'retina' # Higher resolution figures

Load the data of NYPD Civilian Complaints
data = os.path.join('data', 'allegations_202007271729.csv')
police_data = pd.read_csv(data)
print(police_data.shape)
police_data.head()

In [3]:

Column 'rank_now' does not have any missing values. Therefore we shall leave the dataframe as it is for
now and will do permutation later if we decided to create features from columns.

Now we anaylze the type of data in 'rank_now'

In [4]:

'rank_now' has categorical values with 8 different types. Therefore we will perform a multiclass
classification for our prediction.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 33358 entries, 0 to 33357
Data columns (total 27 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 unique_mos_id 33358 non-null int64
 1 first_name 33358 non-null object
 2 last_name 33358 non-null object
 3 command_now 33358 non-null object
 4 shield_no 33358 non-null int64
 5 complaint_id 33358 non-null int64
 6 month_received 33358 non-null int64
 7 year_received 33358 non-null int64
 8 month_closed 33358 non-null int64
 9 year_closed 33358 non-null int64
 10 command_at_incident 31814 non-null object
 11 rank_abbrev_incident 33358 non-null object
 12 rank_abbrev_now 33358 non-null object
 13 rank_now 33358 non-null object
 14 rank_incident 33358 non-null object
 15 mos_ethnicity 33358 non-null object
 16 mos_gender 33358 non-null object
 17 mos_age_incident 33358 non-null int64
 18 complainant_ethnicity 28894 non-null object
 19 complainant_gender 29163 non-null object
 20 complainant_age_incident 28546 non-null float64
 21 fado_type 33358 non-null object
 22 allegation 33357 non-null object
 23 precinct 33334 non-null float64
 24 contact_reason 33159 non-null object
 25 outcome_description 33302 non-null object
 26 board_disposition 33358 non-null object
dtypes: float64(2), int64(8), object(17)
memory usage: 6.9+ MB

Out[4]: Police Officer 10298
Detective 9917
Sergeant 7751
Lieutenant 3696
Captain 735
Deputy Inspector 435
Chiefs and other ranks 312
Inspector 214
Name: rank_now, dtype: int64

police_data.info()

police_data['rank_now'].value_counts()

Baseline Model

In [5]:

We believe that the gender of the ethnicity may have an influence on an officer's ranking and so we decided to
use 'mos_gender' and 'mos_ethnicity' to predict the lastest ranking of the officer for our baseline
model.

First, we split our dataset into a training group and a testing group:

In [6]:

In [7]:

Since both 'mos_gender' and 'mos_ethnicity' are categorical variables, we shall use
OneHotEncoder to transform them. We will use DecisionTreeClassifier as our model for multiclass

prediction.

Out[7]:
mos_gender mos_ethnicity

0 M Hispanic

1 M White

2 M White

3 M White

4 F Hispanic

Import packages needed for model predictions
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import (OneHotEncoder, StandardScaler,
 FunctionTransformer)
from sklearn.compose import ColumnTransformer
from sklearn import metrics
import warnings
warnings.filterwarnings('ignore')

Split dataframe into training and testing set
X = police_data[['mos_gender', 'mos_ethnicity']]
y = police_data['rank_now']
X_train, X_test, y_train, y_test = train_test_split(X, y)

police_data[['mos_gender', 'mos_ethnicity']].head()

In [8]:

In [9]:

In [10]:

Final Model

In [11]:

Out[8]: ▾ Pipeline

Pipeline(steps=[('preproc',
 ColumnTransformer(transformers=[('ohe',
 OneHotEncoder(drop='first',
 handle_unknown
='ignore'),
 ['mos_ethnicity',
 'mos_gender'])])),
 ('clf', DecisionTreeClassifier())])

▸ preproc: ColumnTransformer
▸ ohe

▸ OneHotEncoder

▸ DecisionTreeClassifier

Out[9]: 0.1351067464301651

Out[10]: 0.13594151604823201

Create a Pipeline to perform feature transformation and model training
pl = Pipeline([
 ('preproc', ColumnTransformer(
 transformers = [
 ('ohe', OneHotEncoder(handle_unknown='ignore', drop='first'),
 ['mos_ethnicity', 'mos_gender'])
])
),
 ('clf', DecisionTreeClassifier())
])

Fit our pipeline with the training dataset
pl.fit(X_train, y_train)

Obtain our performance metric on training data
metrics.balanced_accuracy_score(y_train, pl.predict(X_train))

Obtain our performance metric on testing data
metrics.balanced_accuracy_score(y_test, pl.predict(X_test))

Split dataframe into training and testing set
X2 = police_data[['mos_gender', 'complainant_gender', 'mos_ethnicity',
 'complainant_ethnicity', 'mos_age_incident', 'rank_incident']]
y2 = police_data['rank_now']
X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y2)

In [12]:

In [13]:

In [14]:

In [15]:

Out[13]: {'clf__criterion': 'gini', 'clf__max_depth': 14}

Out[14]: 0.35156724991439636

Out[15]: 0.33089203401347467

def modify(df):
 res = pd.DataFrame()
 res['same_gender'] = df['mos_gender'] == df['complainant_gender']
 res['same_ethnicity'] = df['mos_ethnicity'] == df['complainant_ethnicity']
 return res

Pipeline for transforming the gender and ethnicity columns of police and
complainants and performing one-hot encoding
p = Pipeline([
 ('modify', FunctionTransformer(modify)),
 ('ohe', OneHotEncoder(handle_unknown='ignore', drop='first')),
])

Create a Pipeline to perform feature transformation and model training
pl2 = Pipeline([
 ('preproc', ColumnTransformer(
 transformers = [
 ('modify', p, ['mos_gender', 'complainant_gender',
 'mos_ethnicity', 'complainant_ethnicity']),
 ('ohe', OneHotEncoder(handle_unknown = 'ignore', drop='first'),
 ['rank_incident']),
 ('std', StandardScaler(), ['mos_age_incident'])
])
),
 ('clf', DecisionTreeClassifier())
])

hyperparameters = {
 'clf__max_depth': np.arange(2, 50),
 'clf__criterion': ['gini', 'entropy']
}

Get the best hyperparameters using GridSearchCV
searcher = GridSearchCV(pl2, hyperparameters, cv=5, scoring = 'balanced_accuracy')

Fit our searcher with the training dataset
searcher.fit(X_train2, y_train2)
searcher.best_params_

Obtain our performance metric on training data
metrics.balanced_accuracy_score(y_train2, searcher.predict(X_train2))

Obtain our performance metric on testing data
metrics.balanced_accuracy_score(y_test2, searcher.predict(X_test2))

In [16]:

Fairness Analysis

In this section, we want to see if our model gives similar performance between officers of different genders.

In [17]:

Out[17]: array(['M', 'F'], dtype=object)

Plot the confusion matrix
fig, ax = plt.subplots(figsize=(20, 20))
metrics.plot_confusion_matrix(searcher, X_test2, y_test2, ax=ax)
plt.show()

police_data['mos_gender'].unique()

Since there are only two genders in the 'mos_gender' , we can carry on our analysis and form our
hypotheses:

Null Hypothesis: Our model is fair. Its balanced accuracy for female and male officers are
roughly the same, and any differences are due to random chance.
Alternative Hypothesis: Our model is unfair. Its balanced accuracy for male officers is higher
than its balanced accuracy for female officers.
Test Statistic: balanced_accuray_male - balanced_accuray_female

First we assign a new column 'mos_is_male' to the dataframe. The value will be True if the gender of the
officer is male, otherwise False .

In [18]:

Now we create a function that helps us calculate the test statistic:

In [19]:

In [20]:

Now we run a permutation test with 500 trials and store the test statistic for all trials in perm_diffs

In [21]:

difference: 0.056551016855769076

Add new column to the dataframe
police_data['mos_is_male'] = police_data['mos_gender'] == 'M'

define function that calculates the difference between the model metrics of
male and female officers
def f1_diff(m_df,f_df):
 m_accuracy = metrics.balanced_accuracy_score(m_df['rank_now'],
 searcher.predict(m_df))
 f_accuracy = metrics.balanced_accuracy_score(f_df['rank_now'],
 searcher.predict(f_df))

 return m_accuracy - f_accuracy

Obtain the metric difference between male and female officers
male = police_data[police_data['mos_is_male']]
female = police_data[~police_data['mos_is_male']]
obs_diff = f1_diff(male,female)
print('difference:', obs_diff)

Run a permutation test
perm_diffs = []
for _ in range(500):
 police_data['gender_perm'] = np.random.permutation(
 police_data['mos_is_male'].values
)
 male = police_data[police_data['gender_perm']]
 female = police_data[~police_data['gender_perm']]

 perm_diffs.append(f1_diff(male,female))

In [22]:

In [23]:

Our p-value is around 0.006, which is smaller than our threshold of 0.05. Therefore, we reject the null
hypothesis in favor of the alternative hypothesis. It seems like our model maybe biased towards giving
higher balanced accuracy scores for male officers.

In []:

Out[22]: 0.006

Obtain p-value
(perm_diffs > obs_diff).mean()

Visualize the distribution of the permutation set reuslts
pd.Series(perm_diffs).plot(kind='hist', density=True, ec='w')
plt.axvline(x=obs_diff, color='red', linewidth=3);

