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Summary of Findings

Introduction
This dataset in this project contains filled civilian complaints against the New York City police officers. For
police officers, their ranking have effects on their authority and responsibility and implies the police culture
they usually engage during work. Hence, it is useful predict the ranking of a police officer as it may reflect
some about that officer.
We plan to predict, as of July 2020, the rank of an officer that got filed with a complaint. The relavent data
stored in the 'rank_now'  column. Since there are several ranking and the ranking is a categorical
variable, we decided to use multiclass classification for our prediction.
We choose balanced accuracy for our metric. It's most important for our model to correctly predict the
ranking of an officer. False positives and false negatives does not have much of a concern for us.
Since we are planning to predict the officer's latest rank, we are going to only use data that can be
obtained during the time of the incident to form our features.

Baseline Model
We are using 2 categorical features ( 'mos_gender'  and 'mos_ethnicity' ) for prediction:

Both features are encoded using OneHotEncoder
We chose DecisionTreeClassifier  as our classifier

Our performance metric is around 0.13 for both the training and testing dataset.
This current model is not ideal since its performance metric is poor. However, it's performance between the
training and testing set is similar, meaning that the classifier did not overfit the data.

Final Model
We added 4 new features for prediction:

Categorical columns: 'complainant_gender' , 'complainant_ethnicity' , and 
'rank_incident' .

We use FunctionTransformer  to derive new features 'same_gender'  and 
'same_ethnicity'  that show whether or not the police and the complainant have the same

gender or same ethnicity.
Then we one-hot encode these two new features and the 'rank_incident'  feature.

Quantitative column: 'mos_age_incident' .
We use 'StandardScaler'  to standardize the 'mos_age_incident'  column.

We chose DecisionTreeClassifier  as our classifier. By using GridSearchCV , the best
hyperparameters obtained are 'gini'  and 14 for criterion and max_depth, respectively.
This model is still not a good fit since it has low balanced_accuracy_score . However, our model
improved from 0.13 to 0.34 on both the training and testing dataset, showing that the added features help
improve the model.

Fairness Analysis



Null Hypothesis: Our model is fair. Its balanced accuracy for female and male officers are
roughly the same, and any differences are due to random chance.

Alternative Hypothesis: Our model is unfair. Its balanced accuracy for male officers is higher
than its balanced accuracy for female officers.

Test Statistic: balanced_accuray_male  - balanced_accuray_female

Since our p-value from our permutation test is smaller than 0.05, we reject the null hypothesis. It seems like the
difference we've observed is not due to random chance and our model maybe unfair performance between
male and female officers.

Code

In [1]:

In [2]:

Checking for missingness and data types in police_data

(33358, 27)


Out[2]:
unique_mos_id first_name last_name command_now shield_no complaint_id month_received year_receive

0 10004 Jonathan Ruiz 078 PCT 8409 42835 7 201

1 10007 John Sears 078 PCT 5952 24601 11 201

2 10007 John Sears 078 PCT 5952 24601 11 201

3 10007 John Sears 078 PCT 5952 26146 7 201

4 10009 Noemi Sierra 078 PCT 24058 40253 8 201

5 rows × 27 columns

# Import packages needed for analysis
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
%config InlineBackend.figure_format = 'retina'  # Higher resolution figures

# Load the data of NYPD Civilian Complaints
data = os.path.join('data', 'allegations_202007271729.csv')
police_data = pd.read_csv(data)
print(police_data.shape)
police_data.head()



In [3]:

Column 'rank_now'  does not have any missing values. Therefore we shall leave the dataframe as it is for
now and will do permutation later if we decided to create features from columns.

Now we anaylze the type of data in 'rank_now'

In [4]:

'rank_now'  has categorical values with 8 different types. Therefore we will perform a multiclass
classification for our prediction.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 33358 entries, 0 to 33357

Data columns (total 27 columns):

 #   Column                    Non-Null Count  Dtype  
---  ------                    --------------  -----  
 0   unique_mos_id             33358 non-null  int64  
 1   first_name                33358 non-null  object 
 2   last_name                 33358 non-null  object 
 3   command_now               33358 non-null  object 
 4   shield_no                 33358 non-null  int64  
 5   complaint_id              33358 non-null  int64  
 6   month_received            33358 non-null  int64  
 7   year_received             33358 non-null  int64  
 8   month_closed              33358 non-null  int64  
 9   year_closed               33358 non-null  int64  
 10  command_at_incident       31814 non-null  object 
 11  rank_abbrev_incident      33358 non-null  object 
 12  rank_abbrev_now           33358 non-null  object 
 13  rank_now                  33358 non-null  object 
 14  rank_incident             33358 non-null  object 
 15  mos_ethnicity             33358 non-null  object 
 16  mos_gender                33358 non-null  object 
 17  mos_age_incident          33358 non-null  int64  
 18  complainant_ethnicity     28894 non-null  object 
 19  complainant_gender        29163 non-null  object 
 20  complainant_age_incident  28546 non-null  float64
 21  fado_type                 33358 non-null  object 
 22  allegation                33357 non-null  object 
 23  precinct                  33334 non-null  float64
 24  contact_reason            33159 non-null  object 
 25  outcome_description       33302 non-null  object 
 26  board_disposition         33358 non-null  object 
dtypes: float64(2), int64(8), object(17)

memory usage: 6.9+ MB


Out[4]: Police Officer            10298

Detective                  9917

Sergeant                   7751

Lieutenant                 3696

Captain                     735

Deputy Inspector            435

Chiefs and other ranks      312

Inspector                   214

Name: rank_now, dtype: int64

police_data.info()

police_data['rank_now'].value_counts()



Baseline Model

In [5]:

We believe that the gender of the ethnicity may have an influence on an officer's ranking and so we decided to
use 'mos_gender'  and 'mos_ethnicity'  to predict the lastest ranking of the officer for our baseline
model.

First, we split our dataset into a training group and a testing group:

In [6]:

In [7]:

Since both 'mos_gender'  and 'mos_ethnicity'  are categorical variables, we shall use 
OneHotEncoder  to transform them. We will use DecisionTreeClassifier  as our model for multiclass

prediction.

Out[7]:
mos_gender mos_ethnicity

0 M Hispanic

1 M White

2 M White

3 M White

4 F Hispanic

# Import packages needed for model predictions
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import (OneHotEncoder, StandardScaler,
                                   FunctionTransformer)
from sklearn.compose import ColumnTransformer
from sklearn import metrics
import warnings
warnings.filterwarnings('ignore') 

# Split dataframe into training and testing set
X = police_data[['mos_gender', 'mos_ethnicity']]
y = police_data['rank_now']
X_train, X_test, y_train, y_test = train_test_split(X, y)

police_data[['mos_gender', 'mos_ethnicity']].head()



In [8]:

In [9]:

In [10]:

Final Model

In [11]:

Out[8]: ▾ Pipeline

Pipeline(steps=[('preproc',

                ColumnTransformer(transformers=[('ohe',

                                                 OneHotEncoder(drop='first',

                                                               handle_unknown
='ignore'),

                                                 ['mos_ethnicity',

                                                  'mos_gender'])])),

               ('clf', DecisionTreeClassifier())])

▸ preproc: ColumnTransformer
▸ ohe

▸ OneHotEncoder

▸ DecisionTreeClassifier

Out[9]: 0.1351067464301651

Out[10]: 0.13594151604823201

# Create a Pipeline to perform feature transformation and model training
pl = Pipeline([
    ('preproc', ColumnTransformer(
        transformers = [
            ('ohe', OneHotEncoder(handle_unknown='ignore', drop='first'),
             ['mos_ethnicity', 'mos_gender'])
        ])
    ),
    ('clf', DecisionTreeClassifier())
])
​
# Fit our pipeline with the training dataset
pl.fit(X_train, y_train)

# Obtain our performance metric on training data
metrics.balanced_accuracy_score(y_train, pl.predict(X_train))

# Obtain our performance metric on testing data
metrics.balanced_accuracy_score(y_test, pl.predict(X_test))

# Split dataframe into training and testing set
X2 = police_data[['mos_gender', 'complainant_gender', 'mos_ethnicity', 
                  'complainant_ethnicity', 'mos_age_incident', 'rank_incident']]
y2 = police_data['rank_now']
X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y2)



In [12]:

In [13]:

In [14]:

In [15]:

Out[13]: {'clf__criterion': 'gini', 'clf__max_depth': 14}

Out[14]: 0.35156724991439636

Out[15]: 0.33089203401347467

def modify(df):
    res = pd.DataFrame()
    res['same_gender'] = df['mos_gender'] == df['complainant_gender']
    res['same_ethnicity'] = df['mos_ethnicity'] == df['complainant_ethnicity']
    return res
​
# Pipeline for transforming the gender and ethnicity columns of police and
# complainants and performing one-hot encoding
p = Pipeline([
    ('modify', FunctionTransformer(modify)),
    ('ohe', OneHotEncoder(handle_unknown='ignore', drop='first')),
])
​
​
# Create a Pipeline to perform feature transformation and model training
pl2 = Pipeline([
    ('preproc', ColumnTransformer(
        transformers = [
            ('modify', p, ['mos_gender', 'complainant_gender',
                           'mos_ethnicity', 'complainant_ethnicity']),
            ('ohe', OneHotEncoder(handle_unknown = 'ignore', drop='first'),
             ['rank_incident']),
            ('std', StandardScaler(), ['mos_age_incident'])
        ])
    ),
    ('clf', DecisionTreeClassifier())
])

hyperparameters = {
    'clf__max_depth': np.arange(2, 50),
    'clf__criterion': ['gini', 'entropy']
}
​
# Get the best hyperparameters using GridSearchCV
searcher = GridSearchCV(pl2, hyperparameters, cv=5, scoring = 'balanced_accuracy')
​
# Fit our searcher with the training dataset
searcher.fit(X_train2, y_train2)
searcher.best_params_

# Obtain our performance metric on training data
metrics.balanced_accuracy_score(y_train2, searcher.predict(X_train2))

# Obtain our performance metric on testing data
metrics.balanced_accuracy_score(y_test2, searcher.predict(X_test2))



In [16]:

Fairness Analysis

In this section, we want to see if our model gives similar performance between officers of different genders.

In [17]:

Out[17]: array(['M', 'F'], dtype=object)

# Plot the confusion matrix
fig, ax = plt.subplots(figsize=(20, 20))
metrics.plot_confusion_matrix(searcher, X_test2, y_test2, ax=ax)
plt.show()

police_data['mos_gender'].unique()



Since there are only two genders in the 'mos_gender' , we can carry on our analysis and form our
hypotheses:

Null Hypothesis: Our model is fair. Its balanced accuracy for female and male officers are
roughly the same, and any differences are due to random chance.

Alternative Hypothesis: Our model is unfair. Its balanced accuracy for male officers is higher
than its balanced accuracy for female officers.

Test Statistic: balanced_accuray_male  - balanced_accuray_female

First we assign a new column 'mos_is_male'  to the dataframe. The value will be True  if the gender of the
officer is male, otherwise False .

In [18]:

Now we create a function that helps us calculate the test statistic:

In [19]:

In [20]:

Now we run a permutation test with 500 trials and store the test statistic for all trials in perm_diffs

In [21]:

difference: 0.056551016855769076


# Add new column to the dataframe
police_data['mos_is_male'] = police_data['mos_gender'] == 'M'

# define function that calculates the difference between the model metrics of
# male and female officers
def f1_diff(m_df,f_df):
    m_accuracy = metrics.balanced_accuracy_score(m_df['rank_now'],
                                                 searcher.predict(m_df))
    f_accuracy = metrics.balanced_accuracy_score(f_df['rank_now'],
                                                 searcher.predict(f_df))
    
    return m_accuracy - f_accuracy

# Obtain the metric difference between male and female officers
male = police_data[police_data['mos_is_male']]
female = police_data[~police_data['mos_is_male']]
obs_diff = f1_diff(male,female)
print('difference:', obs_diff)

# Run a permutation test
perm_diffs = []
for _ in range(500):
    police_data['gender_perm'] = np.random.permutation(
        police_data['mos_is_male'].values
    )
    male = police_data[police_data['gender_perm']]
    female = police_data[~police_data['gender_perm']]
​
    perm_diffs.append(f1_diff(male,female))



In [22]:

In [23]:

Our p-value is around 0.006, which is smaller than our threshold of 0.05. Therefore, we reject the null
hypothesis in favor of the alternative hypothesis. It seems like our model maybe biased towards giving
higher balanced accuracy scores for male officers.

In [ ]:

Out[22]: 0.006

# Obtain p-value
(perm_diffs > obs_diff).mean()

# Visualize the distribution of the permutation set reuslts
pd.Series(perm_diffs).plot(kind='hist', density=True, ec='w')
plt.axvline(x=obs_diff, color='red', linewidth=3);

​


